

Available online at www.sciencedirect.com

Tetrahedron Letters

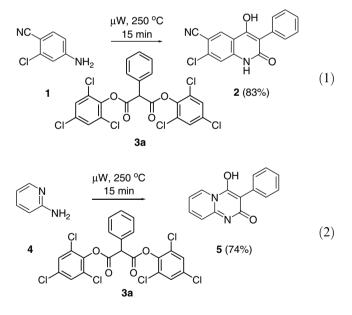
Tetrahedron Letters 48 (2007) 8250-8252

Solvent-free microwave synthesis of novel 6-hydroxypyrimidin-4(1*H*)-one derivatives using arylmalonates

Stephanie M. Chichetti, Sean P. Ahearn, Bruce Adams and Alexey Rivkin*

Department of Drug Design and Optimization, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, United States

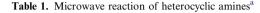
> Received 10 August 2007; accepted 29 August 2007 Available online 7 September 2007

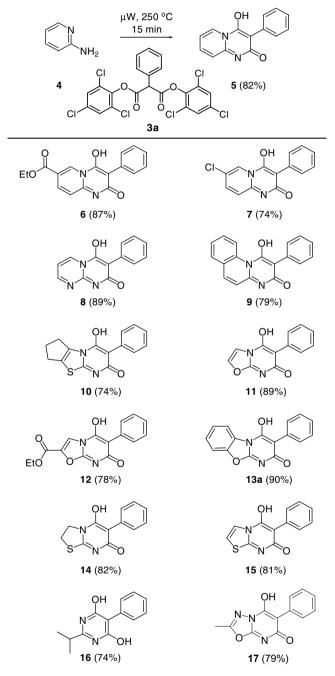

Abstract—The disclosure herein describes the rapid synthesis of novel 6-hydroxypyrimidin-4(1H)-one derivatives via a solvent-free microwave cyclocondensation reaction using di-(2,4,6-trichlorophenyl)malonates and a variety of heterocyclic amines. Published by Elsevier Ltd.

Derivatives of 4-hydroxypyridin-2(1*H*)-one have been shown to be promising pharmaceutical agents for the treatment of cancer,¹ central nervous system disorders,² sex hormone-related conditions,³ the stimulation of bone formation,⁴ and the suppression of allergy associated inflammations.⁵ As a result of these therapeutic properties, interest has grown in the development of methodology for the rapid synthesis of 4-hydroxypyridin-2(1*H*)-one derivatives.^{3a,6}

We recently reported the synthesis and SAR studies of 3-aryl-4-hydroxyquinolin-2(1*H*)-one analogues as a novel class of fatty acid synthase inhibitors (e.g., **2**, $IC_{50} = 136 \text{ nM}$).¹ In order to expedite these SAR studies we developed a rapid synthesis of 3-phenyl-4-hydroxy-quinolin-2(1*H*)-ones via a solvent-free microwave cyclocondensation reaction using di-(2,4,6-trichlorophenyl)-2-phenylmalonate (e.g., $\mathbf{1} \rightarrow \mathbf{2}$, Eq. 1).⁷

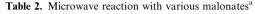
During the course of these studies we discovered that 2-aminopyridine (4) reacted efficiently with di-(2,4,6-trichlorophenyl)-2-phenylmalonate (3a), under our microwave conditions, to provide 4-hydroxy-3-phenyl-2H-pyrido[1,2-*a*]pyrimidin-2-one (5) in 74% yield (Eq. 2).⁸ This microwave reaction proved to be very practical and we therefore sought to explore the reaction scope further. To date, the scope of this type of cyclo-condensation reaction has not been reported. Herein, we report the scope and the yields of the microwave cyclocondensation reaction to prepare derivatives of 6-hydroxypyrimidin-4(1*H*)-one by using di-(2,4,6-tri-

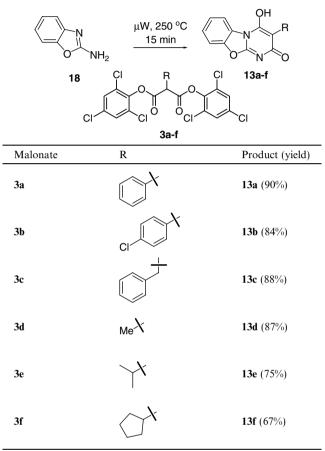

chlorophenyl)malonates and a variety of heterocyclic amines.



The results from Table 1 show that di-(2,4,6-trichlorophenyl)-2-phenylmalonate reacted efficiently with a variety of commercially available heterocyclic amines and 2-methylpropionamidine to provide the desired products (4–17) in good yields. In a typical solvent-free microwave reaction, a mixture of the heterocyclic amines and di-(2,4,6-trichlorophenyl)-2-phenylmalonate in a 1:2 ratio, respectively, was heated at 250 °C for 15 min. The internal pressure of the reaction vessel never surpassed 1 bar. Upon completion, the reaction was

^{*} Corresponding author. Tel.: +1 617 992 2295; fax: +1 617 992 2403; e-mail: alexey_rivkin@merck.com


allowed to reach room temperature and diluted with diethyl ether and the precipitate, which was the product, collected by filtration. The purity of products **5–16**, as determined by LCMS and NMR, was 95–99% and no additional purification was required. The only exception was product **17**, which required purification via chromatography.



^a Isolated yields of compounds, which were characterized by ¹H NMR, ¹³C NMR, and LCMS.

To further demonstrate the simplicity and potential generality of this microwave reaction, we conducted the microwave reaction with a variety of di-(2,4,6-trichlorophenyl)malonates (Table 2, **3a–f**).⁹ The results show that a variety of di-(2,4,6-trichlorophenyl)malonates reacted efficiently with 1,3-benzoxazol-2-amine to provide the desired corresponding products **13a–f** in high yields. These products were purified via precipitation with diethyl ether and filtration.

^a Isolated yields of compounds, which were characterized by ¹H NMR, ¹³C NMR, and LCMS.

In summary, we have shown that the short reaction time, in combination with the high yields and minimal purification of the products, makes this microwave reaction with di-(2,4,6-trichlorophenyl)malonates ideal for the rapid preparation of 6-hydroxypyrimidin-4(1H)-one derivatives. The key to the success of these microwave reactions is the use of di-(2,4,6-trichlorophenyl)malonates. The advantage of using di-(2,4, 6-trichlorophenyl)malonates is that they form the intermediate anilide and undergo electrophilic aromatic cyclization more efficiently than less reactive malonates, such as diethyl-2-phenylmalonate. Furthermore, the by-product from the microwave reaction is 2,4,6-trichlorophenol, which reduces, relative to ethanol, the internal pressure in a closed microwave reaction vessel and allows the reaction to proceed efficiently. Further application of di-(2,4,6-trichlorophenyl)malonates in cyclocondensation reactions is currently under investigation.

Acknowledgments

The authors would like to acknowledge Christopher J. Dinsmore, Mark T. Goulet, and Ben Munoz for their helpful suggestions in the preparation of the manuscript.

References and notes

- Rivkin, A.; Kim, Y. R.; Goulet, M. T.; Bays, N.; Hill, A. D.; Kariv, I.; Krauss, S.; Ginanni, N.; Strack, P. R.; Kohl, N. E.; Chung, C. C.; Varnerin, J. P.; Goudreau, P. N.; Chang, A.; Tota, M. R.; Munoz, B. *Bioorg. Med. Chem. Lett.* 2006, 16, 4620–4623.
- (a) McQuaid, L. A.; Smith, E. C. R.; Lodge, D.; Pralong, E.; Wikel, J. H.; Calligaro, D. O.; O'Malley, P. J. J. Med. Chem. 1992, 35, 3423–3425; (b) Rowley, M.; Kulagowski, J. J.; Watt, A. P.; Rathbone, D.; Stevenson, G. I.; Carling, R. W.; Baker, R.; Marshall, G. R.; Kemp, J. A.; Foster, A. C.; Grimwood, S.; Hargreaves, R.; Hurley, C.; Saywell, K. L.; Tricklebank, M. D.; Leeson, P. D. J. Med. Chem. 1997, 40, 4053–4068.
- (a) DeVita, R. J.; Hollings, D. D.; Goulet, M. T.; Wyvratt, M. J.; Fisher, M. H.; Lo, J. L.; Yang, Y. T.; Cheng, K.;

Smith, R. G. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 2615–2620;
(b) DeVita, R. J.; Goulet, M. T.; Wyvratt, M. J.; Fisher, M. H.; Lo, J. L.; Yang, Y. T.; Cheng, K.; Smith, R. G. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 2621–2624.

- (a) Xu, M. X.; Duan, W. H.; Zheng, H. Yaoxue Xuebao
 1995, 30, 792–795, CA 124: 201978; (b) Duan, W.; Xu, M.;
 Zheng, H. Zhongguo Yaowu Huaxue Zazhi 1995, 5, 122–126, CA 124: 289213.
- Sherlock, M. H.; Kaminski, J. J.; Tom, W. C.; Lee, J. F.; Wong, S. C.; Kreutner, W.; Bryant, R. W.; McPhail, A. T. *J. Med. Chem.* **1988**, *31*, 2108–2121.
- (a) Kulkarni, B. A.; Ganesan, A. Chem. Commun. 1998, 785–786; (b) Lange, J. H. M.; Verneer, P. C.; Osnabrug, S. J. M.; Visser, G. M. Tetrahedron Lett. 2001, 42, 1367–1369; (c) Mitsos, C. A.; Zografos, A. L.; Igglessi-Markopoulou, O. J. Org. Chem. 2001, 68, 4567–4569.
- Rivkin, A.; Adams, B. Tetrahedron Lett. 2006, 47, 2395– 2398.
- (a) Kappe, T.; Lube, W. Monatsh. Chem. 1971, 102, 781– 787; (b) Dvortsak, P.; Resofszki, G.; Huhn, M.; Zalantai, L. Tetrahedron 1976, 32, 2117–2120; (c) Schober, B. D.; Kappe, T. J. Hetrocycl. Chem. 1988, 25, 1231–1236.
- 9. Roma, G.; Di Braccio, M.; Carrieri, A.; Grossi, G.; Leoncini, G.; Signorello, M. G.; Carotti, A. *Bioorg. Med. Chem.* **2003**, *11*, 123.